Kurihara, T.. Uchida, A., Ohashi, Y., Sasada. Y. \& Ohgo, Y. (1984). J. Aim. Chem. Soc. 106, 5718-5724.

Molecular Structure Corporation (1992a). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands. TX 77381. USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC. 3200 Research Forest Drive. The Woodlands. TX 77381, USA.
Ohashi. Y. (1988). Acc. Chem. Res. 21. 268-274.
Ohashi, Y., Sakai, Y.. Sckine. A.. Arai, Y.. Ohgo, Y.. Kamiya. N. \& Iwasaki. H. (1995). Bull. Chem. Soc. Jpn. In the press.
Ohashi, Y.. Yanagi, K.. Kurihara. T.. Sasada. Y. \& Ohgo. Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.

Sakai, Y.. Ohashi, Y.. Yamanaka, M., Kobayashi, Y., Arai, Y. \& Ohgo, Y. (1993). Acta Cřst. B49, 1010-1014.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Yamada, T., Sekinc. A., Uekusa, H.. Ohashi, Y.. Arai, Y. \& Ohgo, Y. (1995). Acta Crust. C51. 828-831.

Acta Cryst. (1996). C52, 1089-1091

Di- μ-isocyanato-bis[isocyanato(1,10phenanthroline)copper(II)]

O. Jerry Parker, Mary P. Wolther and Gary L. Breneman*

Department of Chemistry and Biochemistry (MS-74), Eastern Washington University; Cheney, WA 99004, USA. E-mail: gbreneman@ewu.edu
(Received 4 April 1995; accepted 13 December 1995)

Abstract

The structure of blue $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$ consists of $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\mathrm{phen})\right]$ subunits (phen is $1,10-$ phenanthroline) in a distorted planar arrangement, the subunits existing in centrosymmetrically related pairs in the crystal packing. The subunits have a distorted fourcoordinate square-planar arrangement of N atoms about the central Cu atom; pairs of these $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\right.$ phen $\left.)\right]$ subunits form dimers by interaction of the fifth position on each Cu center with an N atom of an isocyanate ligand of the associated subunit. The coordination around each Cu atom is best described as distorted squarepyramidal.

Comment

The crystal structure of $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\right.$ (phen) $]$ (Parker \& Breneman, 1993) has been shown to contain an infinite linear chain of NCS^{-}-bridged Cu atoms. It was anticipated that the isocyanate complex (I) might have a similar structure and packing arrangement, and exist as discrete pairs of $\left[\mathrm{Cu}(\mathrm{NCO})_{2}\right.$ (phen)] subunits. Three related structures have been determined and these exhibit
a similar bridging pattern involving the isocyanate ligands. The complexes $\left[\mathrm{Cu}_{2}(\mathrm{bpm})(\mathrm{NCO})_{4}\right]_{n}$ (Julve, Verdaguer, De Munno, Real \& Bruno, 1993), where bpm is bipyrimidine, $\left[\mathrm{Cu}(\mathrm{NCO})_{2} \text { (diMeen) }\right]_{2}$ (Mauro, Klein, Saldana, de Simone, Zukerman-Schpector \& Castellano, 1990), where diMeen is N, N-dimethylethylenediamine, and $\left[\mathrm{Cu}_{2}(\right.$ apox $\left.)(\mathrm{NCO})_{2}\right]$ (Lloret, Julve, Faus, Ruiz, Castro, Mollar \& Philoche-Levisalles, 1992), where H_{2} apox is N, N^{\prime}-bis(3-aminopropyl)oxamide, have structures that are bridged end-on through the nitrogen ends of the isocyanate ligands.

(I)

An ORTEP plot (Johnson, 1965) of (I) is shown in Fig. 1, with the atom-numbering system indicated. A stereoscopic plot of the unit cell is shown in Fig. 2. The title compound consists of discrete $\left[\mathrm{Cu}(\mathrm{NCO})_{2} \text { (phen) }\right]_{2}$ pairs which are bridged through isocyanate ligands in an asymmetrical end-on fashion. The subunits have a four-coordinated distorted square-planar arrangement of N atoms about the central Cu atom; pairs of these $\left[\mathrm{Cu}(\mathrm{NCO})_{2}\right.$ (phen) $]$ subunits form dimers by the interaction of the fifth position on each Cu center with an N atom of a cyanate ligand of the associated subunit. One isocyanate ligand on each Cu center thus serves as a linkage for the dimer, with the other attached through the N atom to only one Cu atom. Each Cu atom has distorted square-pyramidal coordination, with the sixth position unoccupied.

Fig. 1. A displacement ellipsoid plot $(50 \%$ probability) of $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\text { phen })\right]_{2}$ showing the atom-numbering scheme.

Fig. 2. A stereoscopic drawing of the unit cell of $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\text { phen })\right]_{2}$.

In (I), the $\mathrm{Cu}-\mathrm{N}_{\mathrm{phen}}$ distances are 2.042 (2) and 2.035 (2) \AA, with a N3- $\mathrm{Cu}-\mathrm{N} 4$ angle of $80.56(7)^{\circ}$. These values are similar to those found in both $\left[\mathrm{Cu}_{2}(\mathrm{bpm})(\mathrm{NCO})_{4}\right]_{n}$ (Julve, Verdaguer, De Munno, Real \& Bruno, 1993) and $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\right.$ (phen)] (Parker \& Breneman, 1993). The $\mathrm{Cu}-\mathrm{NCO}$ distances are 1.970 (2) and 1.927 (2) \AA, with the isocyanate ligand bridging the two Cu atoms having the longer $\mathrm{Cu}-\mathrm{N}$ distance. The $\mathrm{Cu}^{i}-$ N1 distance of the fifth position is $2.481(2) \AA$ [symmetry code: (i) $-x,-y, 2-z]$, which compares with $2.456(7) \AA$ for $\left[\mathrm{Cu}_{2}(\mathrm{bpm})(\mathrm{NCO})_{4}\right]_{n}$, and $2.346(5)$ and $2.466(5) \AA$ for $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\text { diMeen })\right]_{2}$. The two Cu and the bridging N atoms of the isocyanate ligands describe a rectangle, with a $\mathrm{Cu} \cdots \mathrm{Cu}^{i}$ distance of $3.2373(5) \AA$. The $\mathrm{Cu} \cdots \mathrm{Cu}^{\mathrm{i}}$ distance in $\left[\mathrm{Cu}_{2}(\mathrm{bpm})(\mathrm{NCO})_{4}\right]_{n}$ is $3.418(1) \AA$ and in $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\mathrm{diMeen})\right]_{2} 3.2464(9) \AA$. In $\left[\mathrm{Cu}(\mathrm{NCO})_{2} \text { (phen) }\right]_{2}$, the square-pyramidal coordination of the Cu atom is distorted as the Cu atom lies above the basal plane.

Both the end-on bridging N -coordinated isocyanato and the non-bridging isocyanato ligands are approximately linear, with $\mathrm{N}-\mathrm{C}-\mathrm{O}$ angles of 176.7 (3) and $178.3(3)^{\circ}$, respectively. In both cases, the $\mathrm{C}-\mathrm{O}$ distances are longer than the $\mathrm{C}-\mathrm{N}$ distances, with averages of 1.19 and $1.13 \AA$, respectively. These angles and distances are very close to those found in both $\left[\mathrm{Cu}_{2}(\mathrm{bpm})(\mathrm{NCO})_{4}\right]_{n}$ and $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\text { diMeen })\right]_{2}$.

Experimental

The title compound was prepared by the slow addition of a 25 ml solution of 1,10 -phenanthroline monohydrate $(1.98 \mathrm{~g}$, 10.0 mmol) in ethanol to a 15 ml solution of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ $(1.71 \mathrm{~g}, 10.0 \mathrm{mmol})$ dissolved in water. To the resulting solution, which contained a yellow-green precipitate, solid KOCN ($1.66 \mathrm{~g}, 20.0 \mathrm{mmol}$) was slowly added with continuous stirring. The product obtained was a pale-blue solid which was dissolved in dimethyl sulfoxide with mild heating. A single crop of bright deep-blue crystals was obtained on evaporation of the solvent.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{NCO}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\right.$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA
\end{aligned}
$$

$M_{r}=655.58$

Monoclinic
$P 2_{1} / c$
$a=7.852(2) \AA$
$b=13.714(2) \AA$
$c=13.265(3) \AA$
$\beta=118.98(1)^{\circ}$
$V=1249.6(5) \AA^{3}$
$Z=2$
$D_{x}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
$T_{\text {min }}=0.870, \quad T_{\text {max }}=$ 0.997

2303 measured reflections
2085 independent reflections
Cell parameters from 25 reflections
$\theta=8.93-22.48^{\circ}$
$\mu=1.76 \mathrm{~mm}^{-1}{ }^{\circ}$
$T=293 \mathrm{~K}$
Needle
$0.70 \times 0.20 \times 0.10 \mathrm{~mm}$ Blue

$$
\begin{aligned}
& 1814 \text { observed reflections } \\
& \quad[I>3 \sigma(I)] \\
& R_{\text {int }}=0.018 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=-9 \rightarrow 8 \\
& k=0 \rightarrow 15 \\
& l=0 \rightarrow 15 \\
& 1 \text { standard reflection } \\
& \text { frequency: } 167 \mathrm{~min} \\
& \text { intensity decay: } 0.80 \%
\end{aligned}
$$

Refinement

Refinement on F
$R=0.028$
$w R=0.036$
$S=1.44$
1814 reflections
222 parameters
H atoms refined as riding $u=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.03$

$$
\Delta \rho_{\text {max }}=0.57 \mathrm{e}^{\AA^{-3}}
$$

$$
\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}
$$

Extinction correction: none
Atomic scattering factors from Cromer \& Mann (1968) and International Tables for X-ray Crystallography (1974. Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(A^{2}\right)$

	$B_{\mathrm{eq}}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	こ	$B_{\text {cy }}$
Cu	0.15 .558 (3)	0.0081112	$0.95188(2)$	$2.900(6)$
OI	- 0.0654 (3)	-0.2688 (2)	0.9251 (2)	7.38 (7)
02	-0.2023 (4)	-0.0172 (2)	0.5922 (2)	7.92 (8)
NI	0.0354 (3)	-0.1078 (1)	$0.9807(2)$	3.69 (4)
N2	-0.0221 (3)	$0.0117(2)$	$0.788312)$	4.37 (5)
N3	0.38 .31 (2)	0.0039 (1)	1.1146 (1)	2.99 (4)
N 4	0.3058 (2)	$0.1260(1)$	0.9443 (1)	3.04 (4)
Cl	-0.01.33 (3)	-0.1864 (2)	0.9512 (2)	3.66 (5)
C2	-0.1083 (4)	-0.0034 (2)	0.6937 (2)	3.82 (6)
C3	0.4204 (3)	-0.0600 (2)	1.1981 (2)	3.72 (5)
C4	0.5767 (3)	-0.0496 (2)	1.3088 (2)	4.34 (6)
C5	0.6988 (3)	$0.0286(2)$	1.3350 (2)	4.17 (6)
C6	0.6630 (3)	0.0982 (2)	1.2489 (2)	3.51 (5)
C7	0.7790 (3)	0.1837 (2)	1.2661 (2)	4.33 (6)
C8	0.7367 (3)	0.2469 (2)	1.1795 (2)	4.38 (6)
C 9	0.5773 (3)	$0.2309(2)$	1.0666 (2)	3.65 (5)
C10)	0.5250 (3)	$0.293512)$	0.9723 (2)	4.59 (6)
Cl 1	0.3711 (3)	$0.2696(2)$	0.8682 (2)	4.78 (6)
C12	0.2650 (3)	0.18 .57 (2)	0.8564 (2)	3.75 (5)
C13	0.4612 (3)	0.1484 (2)	1.0481 (2)	2.93 (5)
$\mathrm{Cl}+$	$0.50+1$ (3)	$0.0815(2)$	1.1400 (2)	2.95 (4)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cu} \cdots \mathrm{Cu}^{1}$	$3.2373(5)$	$\mathrm{N} 4-\mathrm{Cl} 3$	$1.360(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.970(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.391(4)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.927(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.366(4)$

$\mathrm{Cu}-\mathrm{N} 3$	2.035 (2)	C5-C6	1.409 (4)
$\mathrm{Cu}-\mathrm{N} 4$	2.042 (2)	C6-C7	1.434 (4)
$\mathrm{Ol}-\mathrm{Cl}$	1.193 (3)	C6-C14	1.396 (3)
$\mathrm{Cu}^{1}-\mathrm{N} 1$	2.481 (2)	C7-C8	1.346 (4)
$\mathrm{O} 2-\mathrm{C} 2$	1.196 (4)	C8-C9	1.428 (4)
$\mathrm{N} 1-\mathrm{Cl}$	1.147 (3)	C9-C10	1.405 (4)
N2-C2	1.119 (4)	C9--C13	1.398 (3)
N3-C3	1.329 (3)	Cl0-C11	1.363 (4)
N3-C14	1.356 (3)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.385 (4)
N4-C12	1.330 (3)	C13-C14	1.430 (3)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	95.27 (9)	C7-C6-C14	118.6 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	91.70 (8)	C6-C7-C8	121.1 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 4$	172.26 (8)	C7-C8-C9	121.6 (2)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	167.98 (9)	C8-C9-C10	124.6 (2)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 4$	92.35 (9)	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	118.3 (2)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 4$	80.56 (7)	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{Cl} 3$	117.0 (2)
$\mathrm{Cu}-\mathrm{NI}-\mathrm{Cl}$	143.3 (2)	C9-C10-C11	119.2 (3)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	166.3 (2)	$\mathrm{Cl} 0-\mathrm{Cl1}-\mathrm{Cl2}$	120.3 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 3$	128.8(2)	N4- $\mathrm{Cl} 2-\mathrm{Cl1}$	122.4 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{Cl4}$	113.3 (2)	N4-C13-C9	123.3 (2)
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{Cl} 4$	117.8 (2)	N4-Cl3-C14	116.3 (2)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl2}$	129.2 (2)	C9-C13-C14	120.4 (2)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl} 3$	112.8 (1)	N3-C14-C6	123.6 (2)
$\mathrm{Cl} 2-\mathrm{N} 4-\mathrm{Cl} 3$	117.7 (2)	$\mathrm{N} 3-\mathrm{Cl} 4-\mathrm{Cl} 3$	116.4 (2)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{N}$ l	176.7 (3)	C6-C14-C13	120.0 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 2$	178.3 (3)	$\mathrm{Cu}^{\text {- }}-\mathrm{Nl}-\mathrm{Cu}$	92.59 (8)
N3-C3-C4	122.5 (2)	$\mathrm{Cu}^{\prime}-\mathrm{Nl}-\mathrm{Cl}$	118.9 (2)
C3-C4-C5	120.0 (2)	$\mathrm{Nl}^{1}-\mathrm{Cu}-\mathrm{Nl}$	87.41 (8)
C4-C5-C6	119.1 (2)	$\mathrm{N} 1^{1}-\mathrm{Cu}-\mathrm{N} 2$	99.49 (9)
C5-C6-C14	117.0 (2)	$\mathrm{Nl}^{\prime}-\mathrm{Cu}-\mathrm{N} 3$	90.58 (8)
C5-C6-C7	124.3(2)	$\mathrm{N} \mathrm{l}^{\prime}-\mathrm{Cu}-\mathrm{N} 4$	92.73 (7)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEP (Johnson, 1965) in SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: MolEN.

We gratefully acknowledge financial support for this study from the EWU Foundation and the EWU Northwest Institute for Advanced Studies.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1036). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Julve, M.. Verdaguer, M., De Munno, G., Real, J. A. \& Bruno, G. (1993). Inorg. Chem. 32. 795-802.

Lloret. G., Julve, M.. Faus, J., Ruiz., R., Castro, I., Mollar, M. \& Philoche-Levisalles, M. (1992). Inorg. Chem. 31. 784-791.
Mauro, A. E., Klein, S. I., Saldana. J. S.. de Simone, C. A., ZukermanSchpector, J. \& Castellano, E. E. (1990). Polyhedron, 9. 2937-2939. Parker, O. J. \& Breneman, G. L. (1993). Polvhedron, 12, 891-895.
Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

